High-Level Abstractions for Simplifying Extended
String Constraints in SMT

Andrew Reynolds', Andres Notzli2,
Clark Barrett?, and Cesare Tinelli!

! Department of Computer Science, The University of lowa
2 Department of Computer Science, Stanford University

Abstract. Satisfiability Modulo Theories (SMT) solvers with support for the
theory of strings have recently emerged as powerful tools for reasoning about
string-manipulating programs. However, due to the complex semantics of ex-
tended string functions, it is challenging to develop scalable solvers for the string
constraints produced by program analysis tools. We identify several classes of
simplification techniques that are critical for the efficient processing of string
constraints in SMT solvers. These techniques can reduce the size and complexity
of input constraints by reasoning about arithmetic entailment, multisets, and string
containment relationships over input terms. We provide experimental evidence
that implementing them results in significant improvements over the performance
of state-of-the-art SMT solvers for extended string constraints.

1 Introduction

Most programming languages support strings natively and a considerable number of
programs perform some form of string manipulation. Automated reasoning about string-
manipulating programs for verification and test case generation purposes is then highly
relevant for these languages and programs. Applications to security, such as finding
SQL injection and XSS vulnerabilities in web applications [18, 16, 23] or proving
their absence, are of critical importance. String constraints have also been used to
generate relational database tables from SQL queries for unit testing purposes [21].
These applications require modeling all of the string operations that appear in real
programs. This is challenging since some of those operations are complex and often
realized by iterative applications of simpler operations. Additionally, since strings in
many programming languages have variable length, reasoning accurately about them
cannot be done by a reduction to bounded types such as bit-vectors, and requires instead
the development of solvers for unbounded strings. To make this type of reasoning
more scalable, the use of dedicated theory solvers natively supporting common string
operations has been proposed [5, 9]. Some string solvers are fully integrated within
Satisfiability Modulo Theories (SMT) solvers [12, 4]; some are built (externally) on top
of such solvers [19, 9, 16]; and others are independent of SMT solvers [23].

A major challenge in developing solvers for unbounded string constraints is the
complex semantics of extended string functions beyond the basic operations of string
concatenation and equality. Extended functions include replace, which replaces a string

in another string, and indexof, which returns the position of a string in another string.
Another challenge is that constraints using extended functions are often combined with
constraints over other theories, e.g. integer constraints over string lengths or applications
of indexof, which requires the involvement of solvers for those theories. Current string
solvers address these challenges by reducing constraints with extended string functions
to typically more verbose constraints over basic functions. As with every reduction, some
of the higher level structure of the problem may be lost, with negative repercussions on
the performance and scalability.

To address this issue, we have developed new techniques that reason about constraints
with extended string operators before they are reduced to simpler ones. This analysis of
complex terms can often eliminate the need for expensive reductions. The techniques are
based on reasoning about relationships over strings with high-level abstractions, such as
their arithmetic relationships (e.g., reasoning about their length), their string containment
relationships, and their relationships as multisets of characters. We have implemented
these techniques in CvC4, an SMT solver with native support for string reasoning. An
experimental evaluation with benchmarks from various applications shows that our new
techniques allows CvC4 to significantly outperform other state-of-the-art solvers that
target extended string constraints.

Our main contributions are:

A novel procedure for proving entailments over arithmetic predicates built from the
theory of strings and linear integer arithmetic.

Extensions of this technique for showing containment relationships between strings.
A novel simplification technique based on abstracting strings as multisets.
Experimental evidence that the simplification techniques provide significant perfor-
mance improvements over current state-of-the-art solvers.

In the remainder of this section, we discuss related work. In Section 2, we provide some
background on the theory of strings and how solvers reduce extended functions. In
Sections 3, 4 and 5, we describe, respectively, our arithmetic-based, containment-based,
and multiset-based simplification techniques. Section 6 describes our implementation of
those techniques, and Section 7 presents our evaluation.

Related Work Various approaches to solving constraints over extended string func-
tions have been proposed. Saxena et al. [16] showed that constraints from the symbolic
execution of JavaScript code contain a significant number of extended string func-
tions, which underlines their importance. Their approach translates string constraints
to bit-vector constraints, similar to other approaches based on bounded strings such as
HAMPI [9]. Bjgrner et al. [5] proposed native support for extended string operators in
string solvers for scaling symbolic execution of .NET code. They reduce extended string
functions to basic ones after getting bounds for string lengths from an integer solver.
They also showed that constraints involving unbounded strings and replace are unde-
cidable. PASS [11] reduces string constraints over extended functions to arrays. Z3-str
and its successors [25, 24, 4] reduce extended string functions to basic functions eagerly
during preprocessing. S3 [18] reduces recursive functions such as replace incrementally
by splitting and unfolding. Its successor S3P [19] refines this reduction by pruning
the resulting subproblems for better performance. Cvc4 [3] reduces constraints with
extended functions lazily and leverages context-dependent simplifications to simplify

n:lnt forallneN +:IntxInt—Int —:Int—Int > :Int x Int — Bool

l:Str forallle A* con:Strx --- x Str — Str len : Str — Int
substr : Str x Int x Int — Str contains : Str x Str — Bool
indexof : Str x Str x Int — Int replace : Str x Str x Str — Str
str.to.int : Str — Int int.to.str : Int — Str

Fig. 1. Functions in signature X's. Str and Int denote strings and integers respectively.

the reductions [15]. TRAU [1] reduces certain extended functions, such as replace, to
context-free membership constraints. OSTRICH [7] implements a decision procedure
for a subset of constraints that include extended string functions. The simplification
techniques presented in this paper are agnostic to the underlying solving procedure, so
they can be combined with all of these approaches.

2 Preliminaries

We work in the context of many-sorted first-order logic with equality and assume
the reader is familiar with the notions of signature, term, literal, formula, and formal
interpretation of formulas. We review a few relevant definitions in the following. A
theory is a pair T' = (X, I) where X is a signature and I is a class of X-interpretations,
the models of T'. We assume X' contains the equality predicate =, interpreted as the
identity relation, and the predicates T (for true) and L (for false). A X-formula ¢ is
satisfiable (resp., unsatisfiable) in T if it is satisfied by some (resp., no) interpretation in
I. We write =1 ¢ to denote that the X’-formula is T-valid, i.e., is satisfied in every
model of 7. Two X-terms ¢, and ¢ are equivalent in T if =7 t1 ~ t5.

We consider an extended theory 75 of strings and length equations, whose signature
Xs is given in Figure 1 and whose models differ only on how they interpret variables.
We assume a fixed finite alphabet A of characters which includes the digits {0, .. ., 9}.
The signature includes the sorts Bool, Int, and Str denoting the Booleans, the integers (Z),
and Kleene closure of A (A™*), respectively. The top half of Figure 1 includes the usual
symbols of linear integer arithmetic, interpreted as expected, a string literal [for each
word/string of A*, a variadic function symbol con, interpreted as word concatenation,
and a function symbol len, interpreted as the word length function. We write € for the
empty word and abbreviate len(s) as |s|. We use words over the characters a, b, and c,
as in abca, as concrete examples of string literals.

We refer to the function symbols in the bottom half of the figure as extended functions
and refer to terms containing them as extended terms. A position in a string [€ A* is a
non-negative integer n smaller than the length of [that identifies the (n + 1) character
of [—with 0 identifying the first character, 1 the second, and so on. For all models Z of
Ts, all I,1y,15 € A*, and n,m € Z, substr” (I, n, m) (the interpretation of substr in Z
applied to [, n, m) is the longest substring of [starting at position n with length at most

3 Our implementation supports a larger set of symbols, but for brevity, we only show the subset
of the symbols used throughout this paper.

m, or € if n is an invalid position or m is not positive; containsz(ll, lo) is true if and
only if [5 is a substring of /1, with € being a substring of every string; indexofI(ll, la,m)
is the position of the first occurrence of I in [; at or after position n, n if I is empty
and 0 < n < |ly|, and —1 if n is an invalid position, or if no such occurrence exists;
replacez(l7 l1,12) is the result of replacing the first occurrence of Iy in I by I3, [if [
does not contain [y, or the result of prepending I to [if I is empty; str.to.int? (1) is the
non-negative integer represented by [in decimal notation or —1 if the string contains
non-digit characters; int.to.str” (n) is the result of converting n to the corresponding
string in decimal notation if n is non-negative, or € otherwise. We write substr(¢, u) as
shorthand for the term substr(¢, u, |t]), i.e. the suffix of ¢ starting at position w.

Note that the semantics for replace and indexof correspond to the semantics in the
current draft of the SMT-LIB standard for the theory of strings [17]; they are slightly
different from the ones described in previous work [4, 15, 20].

2.1 Solving Extended String Constraints (with Simplification)

Various efficient solvers have been designed for the satisfiability problem for quantifier-
free Ts-constraints, including cvc4 [3], s3# [20] and Z3STR3 [4]. In this section, we
give an overview of how these solvers process extended functions in practice.

Generally speaking, constraints involving extended functions are converted to basic
ones through a series of reductions performed in an incremental fashion by the solver.
Operators whose reduction requires universal quantification are dealt with by guessing
upper bounds on the lengths of input strings or by lazily adding constraints that block
models that do not satisfy extended string constraints.

Example 1. To determine the satisfiability of —contains(¢, s), the application of contains
is reduced to constraints that ensure that s is not a substring of ¢ at any position. Assum-
ing we have a fixed upper bound n on the length of ¢, the above constraint is equivalent to
the finite conjunction substr(¢, 0, |s|) # s A - - - A substr(t, n, |s|) # s. Each application
of substr is then eliminated by introducing an equality that constrains a fresh variable z;
to have the semantics of that substring. Thus, reducing the formula above results in

n
/\ [t =i+ |s| = (z; % s At~ con(az?" xy, 2P%) A 2P ~ i A 3] ~ |s])
i=0
where 2;, 2", 27" are fresh string variables.* The above conjunction involves only

string concatenation, string length, and equality, and thus can be handled by a string
solver with support for word equations with length constraints.

The reduction in Example 1 introduces 5 - n theory literals over basic string functions
and 3 - n string variables. A full reduction accounting for all corner cases of substr
is even more complex and thus more expensive to process, even for small values of
n. These performance challenges can be addressed by aggressive simplifications that
eliminate extended functions using high-level reasoning, as shown in the next example.

* This formula is a simplified form of the general reduction. The general reduction also expresses
that ¢ is a valid position in ¢ and that the third argument of substr is non-negative [15].

Example 2. Consider an instance of the previous example where s = con(a,z) and
t = con(b,substr(x,0,n)). A full reduction of —contains(t, s) that eliminates all ap-
plications of substr, including those in ¢, introduces 5 - n + 5 new theory literals and
3 - n + 3 string variables. However, based on the semantics of contains it is easy to see
that —contains(t, s) is Ts-valid: if ¢ were to contain s, then s would have to occur in
the portion of ¢ after its first character b, since the first character of s is a. However,
con(a, z) cannot be contained in substr(z, 0, n), since the length of the former is at least
|z| + 1, while the length of the latter is at most |z|. A solver which recognizes that
—contains(t, s) can be simplified to T in this case can avoid the reduction altogether.

We advocate for aggressive simplification techniques to improve the performance of
string solvers for extended functions. In the next sections, we describe several classes of
such techniques that can be applied to inputs as a preprocessing step or during solving as
part of a context-dependent solving strategy [15]. We present them as sets R of rewrite
rules of the form ¢ — s, where s is a (simplified) term equivalent to ¢ in 75. We assume
a deterministic application strategy for these rules, such that each term ¢ rewrites to a
unique simplified form, denoted by t|, which is irreducible by the rules. We split our
simplifications into four categories, presented in Figures 4, 6, 7 and 8.

3 Arithmetic-Based String Simplification

To simplify string terms, it is useful to establish relationships between quantities such as
the lengths of strings. For example, contains(¢, s) can be simplified to L for a particular
s and ¢ if it can be inferred that |s| is strictly greater than |¢|. This section defines an
inference system for such arithmetic relationships and the simplifications that it enables.
We are interested in proving the Ts-validity of formulas of the form u > 0, where
u is a Ys-term of integer type. We describe an inference system as a set of rules for
deriving judgments of the form - u > 0 and a specific rule application strategy we have
implemented. The inference system is sound in the sense that =, u > 0 whenever
 u > 0 is derivable in it. It is, however, incomplete as it may fail to derive - u > 0
in some cases when =7, u > 0. This incompleteness is by design, since proving the
Ts-validity of inequalities is generally expensive due to the NP-hardness of linear integer
arithmetic. Without loss of generality, we require that the term u be in a simplified form,
where terms of the form |{| with [a string literal of n characters are rewritten to n, terms
of the form |con(ty, ..., t,)| are rewritten to |t1| + - - - + |¢,], and like monomials in
arithmetic terms are combined in the usual way (e.g., 2 - |z| + |z| is rewritten to 3 - |z|).

Definition 1 (Polynomial Form). An arithmetic term u is in polynomial form if u =
mi-uy + ...My - Uy +m, where my, . .., m, are non-zero integer constants, m is an
integer constant, and each ui, . .., U, is a unique term and one of the following:

1. an integer variable,

2. an application of length to a string variable, e.g. |x|,

3. an application of length to an extended function, e.g. |substr(t, v, w)|, or

4. an application of an extended function of integer type, e.g. indexof (¢, s, v).

> Some specialized rules have been omitted for space reasons.

u—»ﬁn n=0

where
Fu>=0
tf v 0

\substr(tvw)|—>y{w if Fv=0and - |t|Zv+w

T [t] — v if Fv=0and -v+4+w >t
[replace(t, s, r)| —u {] if = |r[> |sfor = |r| > [¢]

-] = Js

lint.to.str(v)] -v 1 if Fv=0

indexof (¢, s,v) »uv —1

str.to.int(t) - —1
m-v+u -y m-w+uifvoypwandm >0orv —po wandm <0

|substr(t,v,w)| -0 w if Fw>0
_ i >
|substr(t, v, w)| —o { m v if -t]=>v
|t] if = s| > |r]
replace(t, s,r)| —o {
replace(t, 57l =0 L] +
. v if —v>0
lint.to.str(v)| —o { o1 if o> 0
indexof (£, 5, v) —0 { [t|—|s| if [t > |s|
] |t‘

m-v+u -0 m-w+u ifv—oowandm>0orv -y wandm <0

Fig. 2. Rules for arithmetic entailment based on under- and over-approximations computed for
arithmetic terms containing extended string operators. We write ¢, s, r to denote string terms,
u,u’, v, w to denote integer terms and m, n to denote integer constants.

Given u in polynomial form, our inference system uses a set of over- and under-approx-
imations for showing that v > 0 holds in all models of Ts. We define two auxiliary
rewrite systems, denoted — and —;. If u rewrites to v (in zero or more steps) in — o,
written © — % v, we say that v is an over-approximation of u. We can prove in that case
that =7, v > u. Dually, if u rewrites to v in —, written u —7; v, we say that v is an
under-approximation of u and can prove that =1, u > v. Based on these definitions,
the core of our inference system can be summarized by the single inference rule schema
provided in Figure 2 together with the conditional rewrite systems —¢ and —; which
are defined inductively in terms of the inference system and each other.

A majority of the rewrite rules have side conditions requiring the derivability of
certain judgments in the same inference system. To improve their readability we take
some liberties with the notation and write - u; > us, say, instead of - u; — ug = 0.
For example, |substr(t, v, w)| is under-approximated by w if it can be inferred that the
interval from v to v + w is a valid range of positions in string ¢, which is expressed by
the side conditions - v > 0 and |- |¢| = v + w. Note that some arithmetic terms, such as
|substr (¢, v, w)|, can be approximated in multiple ways—hence the need for a strategy
for choosing the best approximation for arithmetic string terms, described later. The
rules for polynomials are written modulo associativity of + and state that a monomial
m - v in them can be over- or under-approximated based on the sign of the coefficient m.

STR-ARITH-APPROX(u), where u = u, + u¢ + us + m and:
—uz=m{ -y +...+ml yn,
—ug=mi ||+ ..+ mh |z,
- us=mi-vi+...+mg v
for variables z1,...,%p,y1,...,Yn and extended terms v1, ... vq4:
1. If ¢ > 0, choose a v; and v§ that maximize the following criteria (in descending order),
where v’ = (u[m} - v; — m} - vi])|:
(a) (Soundness) v; —y v if mj > 0and v; —o v{ if mj < 0;
(b) (Avoids new terms) Minimizes the size of negcoeff(u)\negcoeff(u);
(c) (Cancels existing terms) Maximizes the size of negcoeff(u)\negcoeff(u').
Return u —y '
2. If p > 0.and m{ > 0 for some j, return u —y (u[m} - |z;] — 0])|.

Fig.3. A greedy strategy for showing arithmetic entailments in the theory Ts. We write
negcoeff (u) to denote the set of terms whose coefficient is negative in .

For simplicity, we silently assume in the figure that basic arithmetic simplifications are
applied after each rewrite step to put the right-hand side in polynomial form.

Example 3. Let u be |replace(z, aa, b)|. Because - |aa| > |b], the first case of the
over-approximation rule for replace applies, and we get that u —¢ |z|. This reflects that
the result of replacing the first occurrence, if any, of aa in x with b is no longer than x.

Example 4. Let u be the same as in the previous example and let v be —1-u+2-|z|. Since
u —0 |z| and the coefficient of v in v is negative, we have thatv —¢ —1 - |z]| + 2 - |z,
which simplifies to |z|; moreover, || —¢ 0. Thus, v —} 0 and so — v > 0. In other
words, we can use the approximations to show that « is at most 2 - |x|.

3.1 A Strategy for Approximation

The rewrite systems —¢ and —¢ allow for many possible derivations. Thus, it is
important to devise a strategy that is efficient and succeeds often in practice. We use a
greedy rule application strategy that favors rule applications leading to the cancellation
of monomials. For example, consider the term |z| — |substr(y, 0, |x|)|, and observe
that the subtrahend can be over-approximated either by |y| or by |z|. However, proving
the Ts-validity of |x| — |substr(y, 0, |z|)| = 0 with the former over-approximation is
impossible since |z| — |y| = 0 does not hold in all models of Ts. In contrast, the latter
approximation produces |z| — |z| = 0 which is trivially Ts-valid.

Recall that, given an arithmetic inequality « > 0, our goal is to find a reduction
u —7; n where n is a non-negative constant. Our strategy for choosing which rule of
— to apply to u is given in Figure 3. We decompose u into three parts: the portion u,,
consisting of a sum of integer variables, the portion u, consisting of a sum of lengths of
string variables, and the remaining portion us which is a sum of monomials involving
extended terms vy, . .., vq as defined in Definition 1.

Since there are multiple choices for how terms in us are approximated, the strategy
focuses primarily on this portion. In particular, we apply an approximation for one of

the terms v;, under-approximating or over-approximating depending on the sign of its
coefficient, and replace the monomial in ¢ by its corresponding approximation. The
choice of v; and v" is based on maximizing the likelihood that the overall derivation will
produce a non-negative constant.

For a term w in polynomial form, let negcoeff(u) be a set of integer terms whose
coefficient is negative in u, e.g. negcoeff(y; + —1-y2) = {y2}. Terms in this set can be
seen as obligations for proving entailments in our derivations since if yo € negcoeff(u),
it must be the case that our derivation applies a rule that introduces a term with a positive
coefficient for y». In Figure 3, we say that our choice of v; — v{ avoids new terms if
it does not have the effect of adding any new terms to negcoeff(u), and cancels existing
terms if it has the effect of removing terms from this set. If the portion ug is empty, we
apply the rule |z;| —¢ 0 if there exists a monomial m? - |z;| where mﬁ is positive. This
rule is applied with lowest priority because these monomials may help to cancel negative
terms introduced by the other steps.

Step 1 depends on knowing the set of possible one-step approximations v; —y v;'
and v; —o vf for terms from u. These are determined using the rules of Figure 2.
Whenever applicable, we break ties between rewrites in Step 1 by considering a fixed
arbitrary ordering over extended terms.

Example 5. Letube 1+ |t1|+ |ta]| — |z1|, where ¢y is substr(za, 1, || + |x4|) and 5 is
replace(x1, x2, x3). Step 1 of STR-ARITH-APPROX considers the possible approxima-
tions |t1] —y |ze| — 1 and [t2| —y |x1| — |z2|. Note that under-approximations
are needed because the coefficients of |¢;| and |¢2| are positive. The first approxi-
mation is an instance of the third rule in Figure 2, noting that both - 1 > 0 and
F 1+ |za| + |x4] = |x2| are derivable by a basic strategy that, wherever applica-
ble, under-approximates string length terms as zero. Our strategy chooses the first
approximation since it introduces no new negative coefficient terms, thus obtaining:
u —y |z2| + |t2] — |z1]. We now choose the approximation |t2| —y |21| — |22|, noting
that it introduces no new negative coefficient terms and cancels an existing one, |z1|.
After arithmetic simplification, we have derived u —>§ 0, and hence - u > 0.

One can show that our strategy is sound, terminating, and deterministic. This means that
applying STR-ARITH-APPROX to completion produces a unique rewrite chain of the
formt -y u; —y ... =y u, for a finite n, where each step is an application of one
of the rewrite rules from Figure 2.

3.2 Simplification Rules with Arithmetic Side Conditions

We use the inference system from the previous section for simplifications of string terms
with arithmetic side conditions. Figure 4 summarizes those simplifications.

The first rule rewrites a string equality to L if one of the two sides can be inferred to
be strictly longer than the other. In the second rule, if one side of an equality, con(s, r, q),
is such that the sum of lengths of s and ¢ alone can be shown to be greater than or
equal to the length of the other side, then » must be empty. The third rule recognizes
that string containment reduces to string equality when it can be inferred that string s
is at least as long as the string ¢ that must contain it. The next rule captures the fact

tas— L if -t > [s| + 1

t~ con(s,m,q) > tacon(s,q) Ar~e if - |s|+ gl =t
contains(t,s) > t~s if - |s| = |t
substr(t,v,w) —> € ifFO>vvozjt|vOozw
substr(con(t, s), v, w) — substr(s,v — |t|, w) if o=t
substr(con(s,t),v,w) — substr(s, v, w) if Hls|zv+w
substr(con(t, s),0,w) — con(t,substr(s,0,w — |t])) if — w > |¢|

indexof (¢,s,v) — ite(substr(¢,v) ~ s,v,—1) if v+ |s]| = |¢|

Fig. 4. String simplification rules. Letters ¢, s, , ¢ denote string terms; v, w denote integer terms.

that substring simplifies to the empty string if it can be inferred that its position v is not
within bounds, or its length w is not positive. In the figure, we write that rule with a
disjunctive side condition; this is a shorthand to denote that we can pick any disjunct
and show that it holds assuming the negation of the other disjuncts. We can use those
assumptions to perform substitutions to simplify the derivation. Concretely, to show
Fup = ugv...vu % u itis sufficient to infer - (uy = ug)[u — u']. We demonstrate
this with an example.

Example 6. Consider the term substr (¢, |t| + w, w). Our rules may simplify this term
to € by inferring that its start position (|¢| + w) is not within the bounds of ¢ if we
assume that its size (w) is positive. In detail, assume that w > 0 (the negation of the
last disjunct in the side condition of the fourth rule), which is equivalent to w ~ |z| + 1
where z is a fresh string variable and |z| denotes an unknown non-negative quantity. It
is sufficient to derive the formula obtained by replacing all occurrences of w by |z| + 1
in the disjunct [¢| + w > [¢] to show that the start position of our term is out of bounds.
After simplification, we obtain |z| + 1 > 0, which is trivial to derive.

The next two rules in Figure 4 apply if we can infer respectively that the start position of
the substring comes strictly after a prefix ¢ or that the end position of the substring comes
strictly before a suffix ¢ of the first argument string. In either case, ¢ can be dropped.

Example 7. Let t be substr(con(z1, replace(xz, x3,24)), 0, w), where w is |z1| — |z2|.
We have that ¢ — substr(z1, 0, w), noting that - |z1]| = 0 + |x1| — |22]. In other words,
only the first component z; of the string concatenation is relevant to the substring since
its end point must occur before the end of z;.

The final rule for substr shows that a prefix of a substring can be pulled upwards if the
start position is zero and we can infer that the substring is guaranteed to include at least a
prefix string ¢. Finally, if we can infer that the last position of s in ¢ starting from position
v is at or beyond the end of ¢, then the indexof term can be rewritten as an if-then-else
(ite) term that checks whether s is a suffix of ¢.

4 Containment-Based String Simplification

This section provides an overview of simplifications that are based on reasoning about
the containment relationship between strings. We describe an inference system for

l1 contains 5 Fsar Ht3*r Rs3fq
F con(l1,t) 312 F con(t,s) a7 F con(t, s) 3 con(r, q) F ¢ 2 substr(t, v, w)

11 does not contain l2 Frt Fl\l2 3t
F 11 $ con(l2, t) - r % con(s,t) F 11 $ con(l2,t)
I3 is a prefix of [y —s3Pr Fv<0
F con(l1,t) 3% ls F con(t,s) o con(t,r) HtaPt F t 3" substr(t, v, w)
I3 is a suffix of I; Fsar Fo+w> |t
F con(t,l1) 3° Io con(s,t) 3° con(r,t) Ht2°t ¢ 3° substr(t, v, w)

Fig. 5. Inferences for string containment 3, is-prefix 3” and is-suffix 3. We write [, l2 to denote
string literals, v, w to denote integer terms and ¢, s, 7, ¢ to denote string terms. Although not shown
here, we also assume rules that reflect the transitivity of 3, 37 and 3°.

deriving when one string is definitely contained or not contained in another. Following
the notation from the last section, we write - ¢t 5 s to denote the judgment of our
inference system, denoting that string ¢ contains string s in all models of 75. Conversely,
we write |- ¢ $ s to denote string ¢ does not contain string s. We write - ¢ 3P s (resp.,
I ¢ 3° s) to denote the judgment indicating that s must be a prefix (resp., suffix) of ¢.

Rules for inferring judgments of these forms are given in Figure 5. Like our rules for
arithmetic, these rules are solely based on the syntactic structure of terms, so inferences in
this system can be computed statically. Both the assumptions and conclusions of the rules
assume associativity of string concatenation with identity element €, that is, con(¢, s)
may refer to a term of the form con(con(t1,t2), s) = con(t1,ts, s) or alternatively to
con(e, s) = s. Most of the rules are straightforward. The inference system has special
rules for substring terms substr(t, v, w), using arithmetic entailments from Section 3 to
show prefix and suffix relationships with the base string ¢. For negative containment, the
rules of the inference system together can show a (possibly non-constant) string cannot
occur in a constant string by reasoning that its characters cannot appear in order in that
string. We write [\ [to denote the empty string if /; does not contain 5, or the result
of removing the smallest prefix of /; that contains l» from [; otherwise.

Example 8. Let t be abcab and let s be con(b, z, a, y, c). String s is not contained in ¢
for any value of x, y. We derive |- t 3 s using two applications of the rightmost rule for
negative containment in Figure 5, noting abcab\ b = cab, cab\ a = b, and b does not
contain c. In other words, the containment does not hold since the characters b, a and c
cannot be found in order in the constant abcad.

4.1 Simplification Rules based on String Containment

Figure 6 gives rules for simplifying extended function terms based on the aforementioned
judgments pertaining to string containment. First, equalities can be rewritten to false
and applications of contains can be rewritten to a constant based on the appropriate
judgment of our inference system. Applications of indexof can be simplified to —1
if it can be shown that the second argument does not appear in the suffix of the first

10

trxs— L if —t3s
contains(t,s) —» L if —Htds
contains(t,s) —» T if —tos
indexof (¢, s,v) > —1 if - substr(t,v) s
indexof (con(¢,7), s,v) — indexof(t, s, v) if - substr(t,v) 3 s
indexof (con(¢,7), s,v) — indexof(r,s,v — [t|) + || if | substr(con(¢,r),v) 3 s and
Fo >t
indexof (¢,s,v) » v if | substr(¢,v) 9" sand v < |¢|
replace(t,s,r) > ¢ if mt?s
replace(con(t,q),s,r) — con(replace(t,s,r),q) if —t>s
replace(t, s,7) — con(r,substr(t, |s|)) if —t2Ps

Fig. 6. Simplification rules based on string containment.

argument starting at the position given by the third argument. The next two rules reason
about cases where the second argument s definitely occurs in the first argument starting
from position v. In this case, if we additionally know that s occurs within (beyond)
a prefix ¢ of the first argument, then the suffix r (prefix t) can be dropped, where the
start position and the return value of the result are modified accordingly. If we know
s is a prefix of the first argument at position v, then the result is v if indeed v is in the
bounds of ¢. Notice that the latter condition is necessary to handle the case where s is
the empty string. The three rules for replace are analogous. First, the replace rewrites
to the first argument if we know it does not contain the second argument s. If we
know s is definitely contained in a prefix of the first argument, then we can pull the
remainder of that string upwards. Finally, if we know s is a prefix of the first argument,
then we can replace that prefix with » while concatenating the remainder. We use the
term substr (¢, |s]) to denote the remainder after the replacement for the sake of brevity,
although this term typically does not involve extended functions after simplification,
e.g. replace(con(z,y), z, z) — con(z,y) noting that (substr(con(z,y), |z|))| = y, or
replace(ab, a,) — con(z, b) noting that (substr(ab, |a|))| = b.

4.2 Simplifications based on Equivalence of String Containment

We further refine our approach based on inferring when one containment is equivalent to
another one. For example, con(a, z) is contained in con(b,) if and only if con(a, x) is
contained in y alone. We introduce simplifications for such equivalences by reasoning
about the maximal overlap between two strings.

We adapt and extend the notation given in previous work [15]. Given string literals
l1 and [y, the sufficient left overlap of [, and Iy, written l; Ly lo, is the largest suffix
of [; that is a prefix of /5 or has [as a prefix. For example, we have abc Li; cd = c,
abc Ly b = bc, and abc L; ba = €. We extend this definition to arbitrary strings s such
that [; Li; s is equivalent to [y L 5 for the largest constant prefix [of s, where notice
that [, is the empty string if s does not have a constant prefix. For example, we have
abc L con(cde, y) = ¢, abc Ly con(b, y) = bc, and abc Ly; con(a, y) = abc. We define
the dual operator sufficient right overlap, written l; L, lo, which is the largest prefix
of [; that is a suffix of [or has [as a suffix, e.g. abc L, b = ab, and extend this to

11

contains(con(t,1),s) — contains(con(t,l L s),s)
contains(con(l, t),s) — contains(con(l L s,t),s)
indexof(con(t, 1), s,v) — indexof(con(¢,l Ly,), s,v)
indexof (con(l,t),s,v) — indexof(con(l2,t),s,v — |l1]) if I =11 -leandle =11y s

+]l] substr(con(l,t),v) 3 s
replace(con(t,l),s,r) — con(replace(con(t,l1),s,7),l2) if I =11 -lcandl; =1, s
replace(con(l,t),s,r) — con(l1, replace(con(lz,t),s, 7)) if I =11 -lpandly =11y s
Fig.7. Simplification rules based on equivalence of string containment. We write [, [1, [> to denote
string literals, v, w to denote integer terms and ¢, s to denote string terms.

arbitrary strings in an analogous way. The sufficient left (resp., right) overlap operator
can be used to determine how much of a constant string prefix /; (resp., suffix) can be
safely removed from a string without impacting whether it contains another string.

The rules in Figure 7 simplify extended terms by considering string overlaps. The
first two rules drop parts of string literals from the suffix or prefix of their first arguments.
The two rules for indexof are similar: a suffix of the first argument can be dropped if it
does not contribute to whether it contains the second argument. A prefix of an indexof
term can be dropped if it does not contribute to containment, but only in the case where
we know the second argument is definitely contained in the first argument. This is to
guard against the case where the entire indexof term returns —1. The rules for replace
are similar to those for contains, except that the suffix (resp., prefix) of the first argument
is pulled upwards instead of being dropped.

S Multiset-Based String Simplification

Next, we introduce simplifications based on reasoning about strings as multisets, i.e. col-
lections of unordered characters. Such reasoning is sufficient for showing that equalities
like con(a, z) ~ con(z, b) are equivalent to L, since the left side of the equality contains
exactly one more occurrence of character a than the right-hand side. Similar to arithmetic
reasoning from Section 3, we use approximations when reasoning about strings as mul-
tisets. We define the multiser abstraction of t, written M, as the multiset {¢1, ..., ¢,}
where t is equivalent to con(t1, . .., t,) and all constants in this set are characters. For
example, M con(aba,a) = {a,a, b, z}. We define a rewrite system —%/‘ over strings where
a rewritten string over-approximates the original string in the following sense: if t =31 s,
then for all models of 7Ts and any character ¢, the number of occurrences of c in the
strings in M is greater than or equal to the number of occurrences in the strings in M.

Figure 8 lists the rules for the rewrite system —>g' and the simplifications based on
multiset reasoning. Given a predicate contains(¢, s), if over-approximating ¢ with respect
to the rules of —%" results in a string r, and it can be determined that s contains strictly
more occurrences of some character c than r, then it cannot be the case that s is contained
in t. To establish this, we check whether the multiset difference of M and M,. contains
¢, and conversely the difference of M, and M contains only character constants which
are distinct from c. In the second rule, if one side of an equality can be determined
to contain only a character c, then one occurrence of that character can be dropped
from both sides of the equality, since the relative position of that character does not

12

contains(t, s) — L if ¢t =3 *r
MMM, = {c, s1,...,8,} and
MT\MS = {61, cee ,Cm}
con(t, ¢, s) ~ con(g, c,r) — con(t, s) ~ con(q,r) if Meon(t,c,s) —o5 *p and
My ={c,...,c}
substr(t, v, w) =5t ¢
where replace(t, s,7) =3 con(t,r)
con(t,s,r) =3 con(t,q,r) if s =3 ¢

Fig. 8. Simplification rules based on multiset reasoning. We write ¢, c1, . . . to denote characters,
v, w to denote integer terms, and ¢, s, 7, ¢, p to denote string terms.

matter. The three rules for —%" state that the multiset abstraction of a term of the form
substr(t, v, w) can be over-approximated as the entire string ¢; a term replace(¢, s, r)
can be over-approximated as a string having both ¢ and r; and over-approximation can
be applied to the children of con terms.

Example 9. We have that con(aaa, substr(z,y1,y2)) ~ con(z,b) — L by noting
that con(aaa, substr(z,y1,y2)) —3' *con(aaa,z), Mcon(asaw) = {a,a,a,z} and
Meon(z,p) = {b,x}. The difference of the latter with the former is {b}, and the for-
mer with the latter is {a, a, a}. Thus, the right side of the equality contains at least one
more occurrence of b than the left side; hence, the equality is equivalent to false.

6 Implementation

We implemented the above simplification rules and others in the DPLL-based SMT
solver CvC4, which implements a theory solver for a basic fragment of word equations
with length, several other theory solvers, and reduction techniques for extended string
functions as described in Section 2.1. Our simplification rules are run in a preprocessing
pass as well as an inprocessing pass during solving. For the latter, we use a context-
dependent simplification strategy that infers when an extended string constraint, e.g.,
—contains(t, s), simplifies to L based on other assertions, e.g., s & €. Our simplification
techniques do not affect the core procedure for the theory of strings, nor the compatibility
of the string solver with other theories. In total, our implementation is about 3,500 lines
of C++ code. We cache the results of the simplifications and the approximation-based
arithmetic entailments to amortize their costs.

Additional Simplification Rules The simplification rules in this paper are a subset of
the rules in the implementation. We omit other uncategorized rules for lack of space.
Many of these apply to specific term patterns, such as cases where two nested applica-
tions of substr can be combined; cases where an application of replace can be eliminated
by case splitting; and other cases like con(t,¢) ~ a — L. An example of such rules is
contains(replace(t, wy, ws), ws) — contains(t, ws) if ws does not overlap with either
wj or ws, because the replace does not change whether ¢ contains ws or not. Another
class of rules only applies to strings of length one because they cannot span multiple com-
ponents of a concatenations, e.g. contains(con(t, s), ¢) — contains(t, ¢) v contains(s, ¢)

13

where c is a character. Finally, there are rewrites that benefit from multiple techniques
presented in this paper. For example, we have a rewrite that splits string equations into
multiple smaller equations if it can determine that prefixes must have the same length:
con(a,t, s) ~ con(t,b,r) — con(a,t) ~ con(t,b) A s ~ 1 — L.

Validating Simplification Rules The correctness of our simplification techniques is
critical to the soundness of the overall solver. Due to the sophistication and breadth of
those techniques, it is challenging to formally verify our implementation. As a pragmatic
alternative, we periodically test our implementation using a testing infrastructure we
developed for this purpose. We found this to be critical in our development process.
Our testing infrastructure allows the developer to specify a context-free grammar in the
syntax-guided synthesis format [2]. We generate all terms ¢ in this grammar up to a fixed
size and test the equivalence of ¢ and its simplified form ¢ on a set of randomly generated
points. The most recent run of this system on two grammars (one for extended string
terms and another for string predicates) up to a term size of three, validated 319,867
simplifications of string terms and 188,428 simplifications of string predicates on 1,000
sample points. This run took 924s for string terms and 971s for the string predicates
using the same hardware as in Section 7.

7 Evaluation

We evaluate the impact of each simplification technique as implemented in CVC4 on
three benchmark sets that use extended string operators: CMU, a dataset obtained
from symbolic execution of Python code [15]; TERMEQ, a benchmark set consisting
of the verification of term equivalences over strings [14]; and SLOG, a benchmark set
extracted from vulnerability testing of web applications [22]. The SLOG set uses the
replace function extensively but does not contain other extended functions. We also
evaluate the impact on APLAS, a set of handcrafted benchmarks involving looping word
equations [10] (string equalities whose left and right sides have variables in common).

We compare CVC4 with Z3 commit 9cb1a0f [8],° a state-of-the-art string solver.
Additionally, we compare against OSTRICH on the SLOG benchmarks but not other
sets because it does not support some functions such as contains and indexof. We
omit a comparison with Z3STR3 4.8.4 because we found multiple issues in its latest
release including wrong answers, which we have reported to the authors. We also omit
a comparison with S3# due to differing semantics. We compare four configurations
of cvc4: all, which enables all optimizations; -arith, which disables arithmetic-based
simplification techniques (discussed in Section 3); -contain, which disables containment-
based simplification techniques (discussed in Section 4); and -msets, which disables
multiset-based simplification techniques (discussed in Section 5). Additionally, to test the
applicability of our techniques to other solvers, we test the effect of our simplifications
on Z3 by using CVC4 to generate simplified benchmarks and then running Z3 on those
benchmarks. We generate a set of simplified benchmarks that are simplified with cvc4
with (z3) and without (z3;) the simplification techniques presented in this paper.

We ran all benchmarks on a cluster equipped with Intel E5-2637 v4 CPUs running
Ubuntu 16.04 and dedicated one core, §GB RAM, and 600 seconds for each job. Table 1

% 9cbla0f is newer than the current release 4.8.4 and includes several fixes for critical issues.

14

Set all -arith -contain -msets z3 73y 73y OSTRICH R%
sat 5703 5535 5703 5703 2343 3923 3943

CMU unsat 65 29 65 65 50 58 61 32%
x 154 358 154 154 3529 1941 1918
sat 10 10 10 10 4 5 5
TERMEQ unsat 51 37 28 51 35 40 60 68%
X 19 33 42 19 41 35 15
sat 1302 1302 1302 1302 1133 1225 1225 1304
SLOG unsat 2082 2082 2082 2082 2080 2080 2080 2082 27%
X 7 7 7 7 178 86 86 5
sat 135 135 135 135 9 51 46
APLAS unsat 292 292 171 171 94 129 292 n/a
x 159 159 280 280 483 406 248
sat 7150 6982 7150 7150 3489 5204 5219 1304
Total unsat 2490 2440 2346 2369 2259 2307 2493 2082
x 339 557 483 460 4231 2468 2267 5

Table 1. Number of solved problems per benchmark set. Best results are in bold. Gray cells
indicate benchmark sets not supported by a solver. “R%” indicates the reduction of extended string
functions during preprocessing. All benchmarks ran with a timeout of 600s.

summarizes the number of solved instances for each configuration and the baseline
solvers grouped by benchmark sets. We remark that the average reduction of extended
string functions (with all simplification techniques enabled) shown in column “R%”
is significant on all benchmark sets. The scatter plots in Figure 9 detail the effects
of disabling each family of simplifications. They distinguish between satisfiable and
unsatisfiable instances. To emphasize non-trivial benchmarks, we omit the benchmarks
that are solved in less than a second by all solvers.

The arithmetic-based simplification techniques have the most significant performance
impact on the symbolic execution benchmarks CMU. The number of solved benchmarks
is significantly lower when disabling those techniques. The scatter plot shows that for
longer running satisfiable queries there is a large portion of the benchmarks that are
solved up to an order of magnitude faster with the simplifications. These improvements in
runtime on the CMU set are particularly compelling because they come from a symbolic
execution application, which involves a large number of queries with a short timeout.
The improvements are more pronounced for unsatisfiable benchmarks, where our results
show that simplifications often give the solver the ability to derive a refutation in a matter
of seconds, something that is infeasible with configurations without these techniques.
The APLAS set contains no extended string operators and hence our arithmetic-based
simplification techniques have little impact on this set.

In contrast, both containment and multiset-based rewrites have a high impact on
the APLAS set, as -contain and -msets both solve 121 fewer benchmarks. Additionally,
-contain has a high impact on the TERMEQ set, where the simplifications enable the
best configuration to solve 61 out of 80 benchmarks. Since these techniques apply most

15

10x "/ 10x 10x
—— 100x —— 100x —— 100x
102 1000x Y 102 1000x 102 1000x
sat 8 i sat 4 sat
unsat ¥ % unsat unsat
= 10! g = 10! y = 10!
] ©]
10° ? 10° 10°
S5 s 2
(3 i‘< () (3
107! x 107! 107!
107! 10° 10! 102 107! 10° 10t 10?2 107! 10° 10! 102
-arith -contain -msets

Fig. 9. Scatter plots showing the impact of disabling simplification techniques in CvVC4 on both
satisfiable and unsatisfiable benchmarks. All benchmarks ran with a timeout of 600s.

frequently to looping word equations, they are less important for the CMU set, which
does not have such equations. The containment-based and multiset-based techniques
primarily help on unsatisfiable benchmarks, as shown in the scatter plots. On TERMEQ
benchmarks, it tends to be easier to find counterexamples, i.e. to solve the satisfiable
ones, so there is more to gain on unsatisfiable benchmarks.

On SLOG, OSTRICH solves two more instances than CVC4 but CvC4 is over 50 times
faster on commonly solved instances while supporting a richer set of string operators.
On all benchmark sets, CvVC4 solves at least as many benchmarks as z3 and CvC4 has
12x fewer timeouts than Z3. On the simplified benchmarks, Z3 performs significantly
better. On the CMU and the APLAS benchmarks, z23; outperforms z3 by a large margin.
Additionally simplifying the benchmarks with the techniques presented in this paper
improves performance further on most benchmark sets and allows Z3; to solve the
most unsatisfiable benchmarks overall. These results indicate that Z3 could benefit from
additional simplifications, and they underscore the importance of curating and publishing
simplification techniques in order to improve the state-of-the-art.

8 Conclusion

We have presented a set of aggressive simplification techniques for reasoning about
extended string constraints. Our results suggest that such techniques are key to advancing
the state of the art in SMT string solving. Arithmetic-based simplifications lead to signif-
icant speedups in benchmarks from a symbolic execution application, while containment
and multiset-based simplifications improve the performance on problems consisting of
difficult term equivalences and looping word equations. Our approach is not limited to
CvC4 and can be adapted to other solvers.

Given the encouraging results for each of the simplification techniques in our evalua-
tion, we plan to extend them to other types of abstraction and make them context-aware.
The latter extension involves taking into account other assertions when checking whether
a side condition of a rule is fulfilled.

Acknowledgements This work was partially supported by the National Science Foun-
dation under award 1656926, the Defense Advanced Research Projects Agency under
award FA8650-18-2-7854, and Amazon Web Services.

16

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

P. A. Abdulla, M. F. Atig, Y. Chen, B. P. Diep, L. Holik, A. Rezine, and P. Riimmer. Trau:
SMT solver for string constraints. In N. Bjgrner and A. Gurfinkel, editors, 2018 Formal
Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30 - November
2, 2018, pages 1-5. IEEE, 2018.

R. Alur, R. Bodik, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-Gazit, P. Madhusudan,
M. M. K. Martin, M. Raghothaman, S. Saha, S. A. Seshia, R. Singh, A. Solar-Lezama,
E. Torlak, and A. Udupa. Syntax-guided synthesis. In M. Irlbeck, D. A. Peled, and
A. Pretschner, editors, Dependable Software Systems Engineering, volume 40 of NATO
Science for Peace and Security Series, D: Information and Communication Security, pages
1-25. I0S Press, 2015.

C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds,
and C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,
2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages 171-177.
Springer, 2011.

M. Berzish, V. Ganesh, and Y. Zheng. Z3str3: A string solver with theory-aware heuristics.
In D. Stewart and G. Weissenbacher, editors, 2017 Formal Methods in Computer Aided
Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017, pages 55-59. IEEE, 2017.

N. Bjgrner, N. Tillmann, and A. Voronkov. Path feasibility analysis for string-manipulating
programs. In S. Kowalewski and A. Philippou, editors, Tools and Algorithms for the
Construction and Analysis of Systems, 15th International Conference, TACAS 2009, Held as
Fart of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009,
York, UK, March 22-29, 2009. Proceedings, volume 5505 of Lecture Notes in Computer
Science, pages 307-321. Springer, 2009.

S. Chaudhuri and A. Farzan, editors. Computer Aided Verification - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I, volume
9779 of Lecture Notes in Computer Science. Springer, 2016.

T. Chen, M. Hague, A. W. Lin, P. Riimmer, and Z. Wu. Decision procedures for path feasi-
bility of string-manipulating programs with complex operations. PACMPL, 3(POPL):49:1—
49:30, 2019.

L. M. de Moura and N. Bjgrner. Z3: an efficient SMT solver. In C. R. Ramakrishnan and
J. Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS 2008, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 337-340. Springer,
2008.

A. Kiezun, V. Ganesh, S. Artzi, P. J. Guo, P. Hooimeijer, and M. D. Ernst. HAMPI: A solver
for word equations over strings, regular expressions, and context-free grammars. ACM Trans.
Softw. Eng. Methodol., 21(4):25:1-25:28, 2012.

Q. L. Le and M. He. A decision procedure for string logic with quadratic equations, regular
expressions and length constraints. In S. Ryu, editor, Programming Languages and Systems
- 16th Asian Symposium, APLAS 2018, Wellington, New Zealand, December 2-6, 2018,
Proceedings, volume 11275 of Lecture Notes in Computer Science, pages 350-372. Springer,
2018.

G. Li and I. Ghosh. PASS: string solving with parameterized array and interval automaton.
In V. Bertacco and A. Legay, editors, Hardware and Software: Verification and Testing - 9th
International Haifa Verification Conference, HVC 2013, Haifa, Israel, November 5-7, 2013,
Proceedings, volume 8244 of Lecture Notes in Computer Science, pages 15-31. Springer,
2013.

17

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

(23]

(24]

[25]

T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters. A DPLL(T) theory solver for
a theory of strings and regular expressions. In A. Biere and R. Bloem, editors, Computer
Aided Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559
of Lecture Notes in Computer Science, pages 646—662. Springer, 2014.

R. Majumdar and V. Kuncak, editors. Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II, volume
10427 of Lecture Notes in Computer Science. Springer, 2017.

A. Reynolds, H. Barbosa, A. Niemetz, A. Notzli, M. Preiner, C. Barrett, and C. Tinelli.
Rewrites for SMT solvers using syntax-guided enumeration. SMT, 2018.

A. Reynolds, M. Woo, C. Barrett, D. Brumley, T. Liang, and C. Tinelli. Scaling up DPLL(T)
string solvers using context-dependent simplification. In Majumdar and Kuncak [13], pages
453-474.

P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A symbolic execution
framework for javascript. In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-
19 May 2010, Berleley/Oakland, California, USA, pages 513-528. IEEE Computer Society,
2010.

C. Tinelli, C. Barrett, and P. Fontaine. Unicode Strings (Draft 1.0). http://smtlib.cs.
uiowa.edu/theories—-UnicodeStrings.shtml, 2018.

M. Trinh, D. Chu, and J. Jaffar. S3: A symbolic string solver for vulnerability detection
in web applications. In G. Ahn, M. Yung, and N. Li, editors, Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ, USA,
November 3-7, 2014, pages 1232-1243. ACM, 2014.

M. Trinh, D. Chu, and J. Jaffar. Progressive reasoning over recursively-defined strings. In
Chaudhuri and Farzan [6], pages 218-240.

M. Trinh, D. Chu, and J. Jaffar. Model counting for recursively-defined strings. In Majumdar
and Kuncak [13], pages 399—418.

M. Veanes, N. Tillmann, and J. de Halleux. Qex: Symbolic SQL query explorer. In
E. M. Clarke and A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal, April 25-May 1,
2010, Revised Selected Papers, volume 6355 of Lecture Notes in Computer Science, pages
425-446. Springer, 2010.

H. Wang, T. Tsai, C. Lin, F. Yu, and J. R. Jiang. String analysis via automata manipulation
with logic circuit representation. In Chaudhuri and Farzan [6], pages 241-260.

F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An automata-based string analysis tool for PHP.
In J. Esparza and R. Majumdar, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus,
March 20-28, 2010. Proceedings, volume 6015 of Lecture Notes in Computer Science, pages
154-157. Springer, 2010.

Y. Zheng, V. Ganesh, S. Subramanian, O. Tripp, M. Berzish, J. Dolby, and X. Zhang. Z3str2:
an efficient solver for strings, regular expressions, and length constraints. Formal Methods
in System Design, 50(2-3):249-288, 2017.

Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: a z3-based string solver for web application
analysis. In B. Meyer, L. Baresi, and M. Mezini, editors, Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26,
2013, pages 114-124. ACM, 2013.

18

http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml

	High-Level Abstractions for Simplifying Extended String Constraints in SMT

